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SUMMARY 
A quasi-three-dimensional numerical model is presented and applied to some test problems with constant 
density. The numerical technique is based on a finite element formulation and the three-dimensional 
problem is factorized into one- and two-dimensional subproblems. The non-linear advection is treated by 
use of a weak formulation of the characteristics method and the equations are transformed to 'sigma' co- 
ordinates. 
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INTRODUCTION 

There is an increased interest in the numerical modelling of three-dimensional fluid flow 
problems. One reason for this is of course the improved computer capabilities available. On the 
other hand, it is usually desirable to simplify the formulations whenever physically reasonable in 
order to increase the computational efficiency. 

Numerical oceanography is a typical example to illustrate this point. Such problems can 
generally be described as nearly horizontal fluid flow problems and it is therefore reasonable to 
introduce the so-called hydrostatic pressure assumption. The resulting three-dimensional system 
can then be solved relatively efficiently compared to the complete three-dimensional formulation. 
The same kind of simplifications are usually relevant for computation of currents in fjords, lakes 
and rivers. 

The literature on such quasi-three-dimensional numerical models has increased over the last 
few years. Many of these models are related to mesoscale oceanographic problems where 
stratification is an important parameter.' - 6  Some models have also been applied to the solution 
of homogeneous quasi-three-dimensional * However, whether the density is assumed 
constant or not, the remaining problem of solving the equations of motion is the same. 

The dominant part of the literature is related to finite difference models, but some exceptions 
can be found where finite and spectral models" have been used. For applications in 
areas with highly irregular geometry, such as fjords and coastal areas, great grid flexibility is 
advantageously. For this reason a finite element formulation has been chosen. The model 
equations are the quasi-three-dimensional equations referenced above and the applications 
shown are for homogeneous flow, although the formulation includes stratification for later use. 
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MODEL EQUATIONS 

Quasi-three-dimensional equations 

The basic mathematical formulation is given by the three-dimensional Navier-Stokes equa- 
tions with the continuity equation included. The class of problems considered here is character- 
ized by a turbulent flow with horizontal dominant mean velocity, and the vertical component of 
the momentum equation can therefore be reduced to a hydrostatic pressure equation to first 
order. By introducing the Reynolds-averaging procedure, these equations are transformed to 
expressions for mean values of the variables over the turbulent fluctuations. The Reynolds 
stresses are further simplified by introducing scalar diffusion coefficients, and the following 
equations are finally obtained: 

horizontal momentum equations 

au/at + a(uu)/ax + a(vu)/ay + a(wu)/az =fV - aa/ax + AhV2u + a(A,au/az)/az, 

where 

continuity equation 

au/ax + a q a y  + aw/az = 0. (4) 
The notation is as follows: (u, u, w) denote the velocity components in the Cartesian co-ordinate 
directions (x ,  y ,  z )  respectively, where z is positive upwards; p is the fluid density and p o  a reference 
density; p is the pressure and pat,,, atmospheric pressure; C is the water elevation; h is the depth 
measured from the mean surface; Ah and A, are the horizontal and vertical diffusivities 
respectively for turbulent mixing of the momentum; f is the (constant) Coriolis parameter; V2 is 
the two-dimensional Laplacian operator in the (x, y )  plane. 

We transform these equations to ‘sigma’ co-ordinates in order to include the surface and 
bottom geometry easily and to allow for the same number of vertical levels all over the 
computational domain. The transformation from (x ,  y ,  z )  to (t, q, 6) co-ordinates is defined by 

a = ( [ - z ) / H ,  t = x ,  q=y,  ~ = t ,  where H=h+C.  ( 5 )  

In these new co-ordinates the following equations of motion can be derived: 

a(Hu)/at + a(Hiuya5 + a(Huu)/aq + Ha(ou) /ao  = Hyii - H a q a y  + H(ay/ay  + aaH/ay)aa/az 

a(Hv)/aT + a(Huu)/ae + a(Huv)/aq + Ha(ov)/ao = - Hfu - Haayaq + H(ay/aq + c a H / a q ) a / a z  

+ HAhV2U + H - 1 a(A,au/aa)/a6, (6) 

+HAhV2U + H -  la(A,av/aa)/aa. (7) 

Note that the Laplacian operator for the horizontal diffusion has not been transformed. The 
transformation of this operator will formally contain some cross-derivatives in addition to the 
two-dimensional Laplacian in the (5,  q)  plane. However, for the class of problems considered the 
horizontal diffusion will be of minor importance and the higher-order terms can therefore be 
neglected. 
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In (6) and (7) a new vertical velocity component, o = D a / D t ,  has been introduced. The 
transformed continuity equation takes the form 

ay/az+a(Hu)/ay +a(Hu)jaq+a(Hw)/aa=o. (8) 
By integration of this equation, the following expression is obtained for w: 

0 

Hw = [ a ( H u ) / a t  + d(Hu)/dq]da + o [ a ( H u ) / a t  + a( H v ) / a q ]  do. (9) SI, 
Vertically averaged equations 

By taking the vertical mean of equations (6)-(8) we obtain the following two-dimensional 
vertically averaged equations: 

a(Hua/az + a(Huaua )/at + a(Hvaua)/aq = Hfva - g H a  (i + q ) / a t  - ( H / P ~  1 a P a t m / a t  

+HAbV2ua+(z , , -Tb , , ) /p0 ,  (lo! 

+ + ( z,q- Tb,q)/ P O ,  (1 1) 

(12) 

a (Hva 1/87 + 8 (Huava)/ 8t + 8 ( Huava )/aq = - Hfua - gHa( i + 4 1/ - ( H / P ~  ) apatm / 

ay/az + a(Hua)/at + a(Hua)/aq =o. 
Here subscript ‘a’ refers to the vertically averaged velocity 

(ua, V a l =  (u, u)da, L 
4’ ( joo CH(P-PO)/POldfJ dfJ ) 

the baroclinic pressure contribution is 

and and Tb are the surface and bottom stresses respectively. 

BOUNDARY CONDITIONS 

The governing equations have the following boundary conditions in Cartesian and sigma co- 
ordinates: 

at the bottom 
p o A , ( a U / a Z )  = poA,H( aU/&J) =Tb, 

(16) 
w =  -(uah/dx+vah/dy) or w=O. 

The bottom stress is calculated from the near-bottom velocity by use of the relations 

Tb = P O  cD I ub I ub, CD = max { [0.4/ln(zb/zo)]2, 04025}. (17) 
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Subscript ‘b’ refers to the near-bottom position and z,, is the bottom roughness. This formulation 
yields a logarithmic velocity profile in the bottom boundary layer if enough resolution is 
provided.* 

Additional conditions must be specified at the lateral boundaries. The following are imple- 
mented in the model. 

Closed (land) boundaries: u =0, a l lan  = T J (  p g H ) ,  where n is the normal to the boundary and 
T,, is the normal component of the surface stress. The elevation condition follows by setting the 
velocity equal to zero in the non-stratified vertically averaged momentum equation. 
Open boundary conditions: a( )/a7 + ca( )/an =O for all variables ( ), where c is the phase speed 
calculated from the interior domain. It should be noted that open boundary conditions are 
generally difficult to handle for these kind of equations and various suggestions exist for 
alternative conditions (see e.g. Reference 1 1). 

NUMERICAL PROCEDURE 

General solution procedure 

The governing equations to be solved are given by (6)-(9). In order to solve these equations we 
make use of a mode-splitting procedure. The two-dimensional part (in the (5 ,  q) plane) of the 
three-dimensional variables are split in the form 

u = u, + u,, 

where u, is the vertically averaged velocity defined by (10)-(14) and u, is the residual part. The 
equations for u, are formally obtained by substitution of u, = u - u, into the governing equations 
(6) and (7) for u. The resulting equations for u, can be written in abbreviated form as 

(18) 

aHu,/az = - a(Huuj)/arj  + a(Huaua,k) /a tk  + H -  la(A,au,/aayaa + s, (19) 
where summation over repeated indices is assumed. It should be noted that summation over j has 
three components while that over k has only two. 

The general solution procedure for each time step is now as follows. The vertically averaged 
equations (10)-(12) for (u,, () are solved first. These values are then substituted into the three- 
dimensional residual equation system (19), which can be solved for u, by assuming u and S to be 
given explicitly from the previous time level. The total velocity field (u, w )  is finally computed from 
equations (1 8) and (9). 

A finite element formulation is applied to solve these equations. The domain is divided into 
three-dimensional elements which coincide with constant o-values in the (5,  q) plane and with 
vertical sides defined in the a-direction. The element geometry is trilinear. The projection of these 
elements in the (5,  q) plane is illustrated in Figure 2 (see later). These two-dimensional elements 
are used to solve the vertically averaged problem. The velocity interpolation is chosen to be 
biquadratic in the (5 ,  q)  plane and linear in the a-direction, while the elevation is bilinear. 

The numerical procedure for each of the subproblems above is specified in the following. 

Solution of the vertically averaged equations 

The vertically averaged equations can be written in abbreviated form as 

aHu,/aT + a(ujHu,)/a<j = s, - g H v r  ( j  = i,2), 

ariaz + v - H U ,  = 0. 
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By introducing a weighted residual formulation of (20) in space and time we have l:+' In w[am,/at + a(ujHu,)/atj-s, + g H v r y n  dt =o, (22) 

where W represents weighting functions, R is the space domain and the time step is limited by 
(t", t,+ l). After integration by parts, (22) becomes 

where the superscripts n and n+ 1 denote time steps and u, is the velocity component normal to 
the boundary r. 

The weighting functions are chosen such that 

aw/aT+u,aw/aC,=o on (t,, t,,+l). (24) 
Equation (22) then reduces to 

([ WHuadQ)l t l=(  [ WHu,dQ)l+S::-I (S W(S,-gHV{)dQ dt+BI, (25) ) 
where BI represents the boundary integral and the source terms can be integrated in time by any 
suitable method. The boundary integral need be calculated only if a Neumann-type condition is 
imposed and can be neglected when Dirichlet conditions are specified. With this in mind, the BI 
term will be omitted in the following for brevity. 

The special choice of the weighting functions in (24) implies that these functions are independ- 
ent of time in a frame moving with the fluid particles, i.e. these functions are transported along the 
streamlines. This method, which has been pioneered especially by the LNH group (Laboratoire 
National d'Hydraulique, EDF),12*13 can be interpreted as a weak form of the method of 
characteristics. It should be noted that this treatment of the advection terms is numerically stable 
and one does not need to introduce any artificial diffusion. 

A time-split procedure is now introduced to solve (25) together with the continuity equa- 
tion (21). The variable Hu, is split as Hu,=Hual +Hu,,, where Hual is defined by 

([WHu.,dQ)l+'=( jWHuadQT+l : " (  [WSadQ)dt. (26) 

([ WHu,dQ)l+'=( [ WHu.,dQytl-[( WgHVjdQ)dt. 

It follows that Hu;" is then given by 

(27) 

The last equation is the weighted residual formulation of 

H ~ ; +  1 = ~ u ; :  1 - At [eg,vr+ 1 + (1 - e ) g ~ v g " ~  (28) 

if the time integral is approximated by a weighted integration. The parameter O=* gives a 
trapezoidal integration and the general range of 0 is 0 ~ 0  < 1. 

The corresponding two-level time discretization of the continuity equation (2 1) is 

r+1= y - ~ t [ e v  - H ~ : + I  + (1 - e)v. ~u:] .  (29) 
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This equation can be transformed to a Helmholtz equation for z by taking the divergence of (28) 
and introducing the resulting expression for div Hu:+ into (29). In weighted residual form this 
transformed continuity equation takes the form 

J 

where Q represents weighting functions. 
The equations to be solved are now given by (26), (27) and (30). For given values at time level n, 

the new time step is computed by first solving for the auxiliary velocity in (26), the elevation is 
then found from (30) and the complete velocity is finally computed from (27). 

These equations are discretized according to the finite element method mentioned above, 
namely by using bilinear elements in the (t, q )  plane and a mixed interpolation with biquadratic 
velocity and bilinear elevation. The weighting functions Win the momentum equation are chosen 
equal to the biquadratic interpolation functions, while the weighting functions Q in the Helmholtz 
equation are bilinear. 

Solution of the residual velocity equations 

the characteristics method to these equations we have 
The residual part of the equation system (19) is considered next. By applying the weak form of 

+[:+I (I[ WH-'a(~vau,ldc),aoldR dt. (31) ) 
A time-split formulation is now applied to separate source terms. The vertical diffusion is treated 
implicitly because of stability reasons, while the rest of the source terms are either known or 
explicitly treated variables. This results in the following expressions: 

( j W H u r d Q y i 1 = (  j W H ~ , d f 2 ) . + A f H - ~ (  ~ [ W & 4 v d ~ r / ~ c ) / d c ] d R  J+I . (33) 

The weighting functions here are chosen to be biquadratic in the (5 ,  q)  plane and linear in the c- 
direction. These equations are discretized according to the finite element formulation noted 
previously and can finally be written in the form 

[M3]{Ur}* =[MA3]{U}"-[Ma3]{Ua}"+[M3]{S}, (34) 

where matrices are indicated by [. .] and vectors with element nodal values are denoted by {. .}. 
The chosen basis functions can be factorized in tensor product form, which makes it possible to 

factorize the three-dimensional matrices as well. A tensor factorization of the mass matrix [M3] 
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and the diffusion matrix [D3] into one- and two-dimensional submatrices gives 

EM31 = CM210 CM 11, P I =  CM210 CD11, (36) 
where index '2' refers to the two-dimensional (5 ,  q)  plane and '1' refers to the one-dimensional 
a-direction. Similarly, the modified mass matrices (due to advection) are factorized as 

(37) [Ma31 = [Ma21 0 [MI], [MA31 = [MA21 0 [MI]. 

The latter factorization is an approximation for the matrix [MA3]. However, if the element 
geometry is practically unchanged by the vertical advection during one time step, this is a good 
approximation. Since the present equation system is derived for nearly horizontal flow, this 
factorization should be appropriate. 

The relations (36) and (37) are substituted into equations (34) and (35), and by performing some 
matrix operations, the equation system can finally be reduced to the following alternating 
direction algorithm: 

sweeps in the (5 ,  q)  plane over all a-levels 

[ M2] { Ur}* = [ MA21 { U}" - [Ma21 { Ua}" + [M2] { S}; (38) 

sweeps in the a-direction over all (5 ,  q)  points 

([Ml] + [D1])(Ur}"+l =[Ml]{Ur}*. (39) 

Computational aspects 

The numerical technique has been chosen in order to increase the efficiency of the code as much 
as possible, i.e. to minimize the computer cost without reducing the accuracy too much. Some 
characteristic features of the present technique are discussed below. 

The two-dimensional numerical integration was performed by use of a nine-point Simpson 
quadrature over each element. This integration technique is relatively efficient l4 and has the 
attractive effect that the velocity mass matrix is diagonalized for the chosen element type. The 
elliptic equation for the elevation (24) was solved by a direct Gaussian elimination method 
together with a skyline storage technique. Since the global coefficient matrix of this equation is 
almost time-independent (the small time-dependent part can be expressed explicitly), this matrix 
needs to be factorized only once and the equation can therefore be solved efficiently during the 
time simulation. 

The implicit part of the residual equation (34) has the form of a tridiagonal system when the 
vertical interpolation is linear (or pentadiagonal if the interpolation is quadratic) and can be 
solved efficiently by standard methods. 

The application of the characteristics method in the present form requires the computation of 
transported elements. This has been performed by transporting the element nodes using a second- 
order Runge-Kutta method. The values at the transported nodes are found from a standard 
biquadratic interpolation over each element. 

Regarding computer time, test 2 in the following section is taken as an example. The 
computational grid has 417 velocity nodes in the horizontal plane and seven levels in the vertical. 
To solve this problem, a CPU time of approximately 9 s per time step was needed on a NORD 
550 computer. In linearized mode the computer time is reduced by a factor of $. Some 
preprocessing time is needed in addition to factorize the elliptic equation and compute some 
constant matrices before the simulation is started. 
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MODEL APPLICATIONS 

Several computations have been performed in order to test the model. Five examples are 
presented in the following: three of them are compared with other known or computed results; the 
other two examples are presented to show certain topographic and non-linear effects which are 
known qualitatively. 

Wind-induced velocity profile in a rectangular basin 

The first example is a fully developed wind-induced circulation in a long rectangular channel 
which is closed at both ends. The wind stress is constant in the longitudinal direction, the bottom 
friction is neglected, there is no rotational effect and the vertical eddy viscosity is constant. With 
these conditions the analytical solution of the velocity profile is easily found to be a parabolic 
function of z. This simple problem was computed with h = 1 m, I;L = 3 N m-', p = lo00 kgm-3 
and A,= m2 s-  '. The numerical result is compared with the analytical solution in Figure 1 
and shows excellent agreement with only six vertical levels. The numerical error for this case is 
limited to approximately 1%. 

Wind-driven circulation in a parabolic basin 

This problem is a generalization of the previous one. A constant wind stress is applied to a 
nearly circular closed basin with parabolic-varying bottom topography. The horizontal geometry 
and the computational grid are shown in Figure 2. The maximum depth at the centre is 10 m and 
the boundary depths are 3 m. The specified wind stress is 0.1 N rn-' in the y-direction, the vertical 
eddy viscosity is 0.001 m2 s - l  and the quadratic bottom friction coefficient is 0.0025. The three- 
dimensional grid has 361 velocity nodes in the horizontal plane and eight levels and the 
computations were performed with a time step At = 300 s. The model was run in linearized form 
and the results are shown in Figures 3-5. Isolines for the elevation are shown in Figure 3 and the 
surface and (near) bottom velocities are shown in Figures 4 and 5 respectively. These results are in 
qualitative agreement with other computations and experiments.'. l S  In these computations no 

10  I 

00 " ' i r I ' I I I L ,  I 
I 

-1 0 -0 5 00 0 5  0 
Velocity (m/s) 

Figure 1. Wind-induced circulation in a closed channel. Comparison of analytical (-) and numerical (+)  solution 
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Figure 2. Geometry and computational grid for test 2 

Figure 3. Surface elevation. The isoline increments are 0.002 m 

Coriolis effect was included, in accordance with the references noted above, although there is a 
certain rotational influence present for the chosen geometrical dimensions. 

One additional observation may be noted. Numerical oscillations have previously been 
observed in certain finite element models, especially for problems with variable bathymetry like 
the present one, and have led to alternative numerical  formulation^.^^ The present results show 
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Figure 5. Near-bottom velocity field for test 2 

a smooth elevation and no tendency of node-to-node oscillations. No artificia. smool 
been used and the horizontal diffusion was set to zero in these computations. 

ing has 

Jet-like flow through a basin 

This problem was constructed in order to study the non-linear effects more closely. The general 
geometry is similar to the previous one, but here with a narrow inlet at one side and a similar 
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1 m / s  - 

Figure 6. Geometry and linear velocity field for test 3. The velocity vectors represent vertically averaged values 

outlet at the opposite side. The inlet and outlet velocities are specified as the only forcing 
mechanism, with a uniform value of 1 m s -  '. The horizontal dimensions are as shown in Figure 6 
and the depth is constant and equal to 10 m. The vertical and horizontal diffusion coefficients are 
0.001 and 5 m2 s- '  respectively, the bottom friction is the same as in the previous test and no 
Coriolis effect is included. The computational grid has 417 velocity nodes in the horizontal plane 
and seven vertical levels and the time step was chosen'as At = 30 s. 

The model was first run in linearized form and the results from this case are shown in Figure 6. 
Since the vertical variations are relatively small, these results are given in vertically averaged form 
here. The non-linear terms were then included and the corresponding results are shown in 
Figure 7. It is seen that the non-linear effects have changed the flow completely. The jet-like inlet 
flow is now passing through the basin without being spread in the same manner as for the linear 
case. One can also observe that large recirculation eddies have developed which are situated 
approximately symmetrically on both sides of the vertical symmetry line. Results at  three cross- 
sections are given in Figure 8. 

The problem was recomputed using a two-dimensional vertically averaged version of the 
model and the result for this case is shown in Figures 9. By comparing Figures 7 and 9 it is seen 
that the three-dimensional model gives vertically averaged velocities very similar to the two- 
dimensional ones. Some minor differences can be observed and these may be attributed mainly to 
the bottom friction, which is calculated differently in the two models. A similar test has previously 
been reported by Benque et al.' for a two-dimensional vertically integrated model. Their result 
shows the same jet and recirculation trends as the present one. 

Driven cavity flow 

Non-linear effects have previously been studied by use of several large-scale three-dimensional 
or quasi-three-dimensional models. However, it seems difficult to find quantitatively well- 
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Figure 7. Non-linear velocity field computed from the three-dimensional model. The vectors represent the vertically 
averaged values. 

established solutions of relatively simple 'benchmark' tests. Alternatively, if the two-dimensional 
part of the model is changed to a Navier-Stokes solver, there exist several well-documented non- 
linear tests. This method may reveal the accuracy of the horizontal part of the non-linear terms, 
which is the dominant part in this context. The test to be presented here is the classical driven 
cavity problem: the flow in a square cavity with three walls fixed (zero velocity) and the upper wall 
sliding to the left with constant velocity U ,  = 1 m s-  '. A Reynolds number Re= U,L/A, = lo00 
was chosen, where L is the length of the cavity. The computations were performed on an 18 x 18 
grid (1369 velocity nodes) with refined elements near the walls and the time step At =0.01 s. The 
computed quasi-stationary velocity field is shown in Figure 10. This result was obtained after a 
simulation of about 30 s, when the solution became approximately steady state. One may observe 
a small secondary eddy at the lower right corner and an even smaller eddy is developing at the 
lower left. Such eddies are typical for this kind of flow problem and are well documented in the 
literature.". l 9  

The result compares well with other calculations, Figure 11, and it should be noted that the 
present grid is relatively coarse compared with the one used by Ghia et a1.'* 

Uniform wind in a rectangular rotating basin 

This problem has been studied by several authors and the present formulation has been chosen 
according to Jamart et aL20 The dimensions of the basin are 600 x 1200 km with a uniform depth 
of 100 m. A uniform surface stress of 0 1  N m-2 is applied in the negative y-direction, the Coriolis 
parameter is 1.2 x the vertically uniform eddy viscosity is 0.01 m2 s- and the horizontal 
diffusivity lo3 m2 s -  '. No-slip boundary conditions are applied both along the lateral boundaries 
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Figure 8. Velocity profiles at three cross-sections in the (x, z) plane, see Figure 7 -, positive values; ----, negative 
values. The velocity increments for u are 0.02 ms-'  and for v are 0.05 ms-'  if positive and 0 1  ms-'  if negative values 
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Figure 9. Non-linear velocity field computed from the two-dimensional vertically averaged model 
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Figure 10. Computed velocity field for the cavity problem 



573 

- - - _  - -  0 
0 

, 2 r -  - - - _  --.. 
/ --.' 

. /--- -- '\ 
- - 

/ - - - -  

/ - -  - _  . - \' ,f -- 
, ---_ ' 

\ \  
L _ - - - -  --. 

.' - - 
/ 

/-- 

---- / 

- \ 
\ 

\ 
. - _ _ - -  - - 

a 
0 - - - -  I-- - . 

- 2  I / _--- -------., , 

~ ~ " - . - . \ , \ \ \ \ (  
J " ' . . % . , , , , , , l  

" ' ~ ' 1 1 1 ~ ~ 1  

" . . , # , , , l J j J J ,  

' ~ ~ ~ l / l l ~ ~ ~  
" , ( 1 / / 1 1 l )  

. ' * " / / / / / / / / 1 1  

-----., , I I / / - - - .  

' \ \ \ I  / I > . - -  
"'*---:.,,,, 

I , . .  

s . < .  

. . , ,  

a 
0 

0 a 

\ . --. - . \ - - - -  

-_- 

0 

0 600000m 

' , < , / / / / / / / / / I 1  

' , / 1 / / / / / / / / / 1 1  

~ f 1 / / / / / / / / / / 1 1  

1 1 1 / / / / / / / / / / 1 1  

1 1 / / / / / / / / / 1 1 1 1  

l l / / / / / / / / / / / * .  
l l / / / / / / / / , , , , '  

l ~ I l / / / / / ~ , ~ , ' '  
l l J / / / , , / , , . ' - '  
I J J l l l , , , , , * - * ~  
l , J l , l , , 8 # , - ' * '  

I , I I I I "  t . . ' * ' I  

, , , , , , L L ~ . . ' " J  

I I \ \ , , " . - - ' * ' I  
I \ \ \ \ \ . . - - - * , ~ ~  

, , , , . . - - - - - - * , / I  , , , .-----------./ I , ,------- ---r/ I . ---- -_- .- 
0 600000 m 



574 T. UTNES 

E 
0 

8cmls 
---+ E 

2 cmls 
& 

0 606000 rn ’ 0. 60d000 m 

Figure 13. Results after 12 h. Left: horizontal velocity at the surface. Right: horizontal velocity 10m above the bottom 

and the bottom. The surface stress is applied impulsively and the simulation was run for about 
30 h with A t =  10 min. Examples of results at t =  12 h are shown in Figures 12 and 13 for 
elevation, mean velocity, surface and near-bottom velocities. These figures correspond to Figures 
2 and 3 in Reference 20. The agreement is relatively good between those results and the present 
ones. A representative comparison is given in Figure 14, which shows the time evolution of the 
elevation at a fixed point in space. The present computation shows a somewhat higher elevation 
and there is a small phase difference between the two results, but the overall agreement is 
satisfactory. 

In addition to the examples shown, it may be mentioned that the two-dimensional linear part 
of the model has previously been tested on several problems documented elsewhere.’l 

CONCLUDING REMARKS 

The aim of this work has been to present a quasi-three-dimensional numerical model and show 
the results of some test problems. The experience from these tests is generally positive. The results 
are reasonably good and the computational algorithm is relatively efficient. Although the model 
is at present limited to homogeneous flow, the main difficulties with the handling of the equations 
of motion have been addressed. 
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Figure 14. Comparison of elevation evolution at the southwest corner of the basin: -, present model; ----, Jamart 
et aL20 

There are several other aspects which need to be considered: the representation of the vertical 
turbulence, the inclusion of stratification, etc. Some of these extensions will be the topic of a future 
project. 
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